Adaptive Bayesian multivariate density estimation with Dirichlet mixtures

نویسندگان

  • WEINING SHEN
  • SURYA T. TOKDAR
  • W. SHEN
  • S. T. TOKDAR
چکیده

We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel’s covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true density belongs. No prior knowledge of smoothness is assumed. The sufficient conditions are shown to hold for the Dirichlet location mixture-of-normals prior with a Gaussian base measure and an inverse Wishart prior on the covariance matrix parameter. Locally Hölder smoothness classes and their anisotropic extensions are considered. Our study involves several technical novelties, including sharp approximation of finitely differentiable multivariate densities by normal mixtures and a new sieve on the space of such densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation

Density estimation, especiallymultivariate density estimation, is a fundamental problem in nonparametric inference. In the Bayesian approach, Dirichlet mixture priors are often used in practice for such problems. However, the asymptotic properties of such priors have only been studied in the univariate case. We extend the L1-consistency of Dirichlet mixutures in the multivariate density estimat...

متن کامل

L1-Consistency of Dirichlet Mixtures in Multivariate Bayesian Density Estimation

Density estimation, especially multivariate density estimation, is a fundamental problem in nonparametric inference. Dirichlet mixture priors are often used in practice for such problem. However, asymptotic properties of such priors have only been studied in the univariate case. We extend L1-consistency of Dirichlet mixutures in the multivariate density estimation setting. We obtain such a resu...

متن کامل

Adaptive Convergence Rates of a Dirichlet Process Mixture of Multivariate Normals

It is shown that a simple Dirichlet process mixture of multivariate normals offers Bayesian density estimation with adaptive posterior convergence rates. Toward this, a novel sieve for non-parametric mixture densities is explored, and its rate adaptability to various smoothness classes of densities in arbitrary dimension is demonstrated. This sieve construction is expected to offer a substantia...

متن کامل

Bayesian Curve Fitting Using Multivariate Normal Mixtures

Problems of regression smoothing and curve fitting are addressed via predictive inference in a flexible class of mixture models. Multidimensional density estimation using Dirichlet mixture models provides the theoretical basis for semi-parametric regression methods in which fitted regression functions may be deduced as means of conditional predictive distributions. These Bayesian regression fun...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013